Deleting the wiki page 'DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart' cannot be undone. Continue?
Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions ranging from 1.5 to 70 billion criteria to construct, experiment, and responsibly scale your generative AI ideas on AWS.
In this post, we demonstrate how to get started with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled versions of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that uses reinforcement learning to boost thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A crucial distinguishing function is its support learning (RL) action, which was utilized to fine-tune the design's responses beyond the basic pre-training and tweak procedure. By integrating RL, DeepSeek-R1 can adjust more effectively to user feedback and goals, ultimately enhancing both significance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, suggesting it's geared up to break down intricate inquiries and factor through them in a detailed way. This directed thinking process permits the model to produce more precise, transparent, and detailed responses. This model fine-tuning with CoT capabilities, aiming to produce structured responses while focusing on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has actually caught the industry's attention as a flexible text-generation design that can be integrated into different workflows such as agents, rational reasoning and information interpretation jobs.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion criteria, enabling effective reasoning by routing inquiries to the most relevant expert "clusters." This method allows the design to specialize in different problem domains while maintaining total performance. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 design to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more efficient designs to simulate the behavior and reasoning patterns of the larger DeepSeek-R1 model, using it as an instructor design.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise deploying this design with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid hazardous content, and examine designs against essential security criteria. At the time of composing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create several guardrails tailored to different usage cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limit increase, create a limit boost request and connect to your account group.
Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Establish authorizations to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to introduce safeguards, prevent harmful material, and examine models against crucial safety criteria. You can carry out precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to examine user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The general circulation involves the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After getting the design's output, another guardrail check is used. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas show inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, choose Model catalog under Foundation models in the navigation pane.
At the time of composing this post, you can utilize the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and pick the DeepSeek-R1 design.
The design detail page supplies vital details about the design's capabilities, rates structure, and forum.altaycoins.com application standards. You can find detailed use directions, including sample API calls and code snippets for integration. The model supports numerous text generation tasks, including material production, code generation, and question answering, utilizing its reinforcement learning optimization and CoT thinking capabilities.
The page likewise includes release alternatives and licensing details to help you start with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, select Deploy.
You will be prompted to configure the implementation details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters).
5. For Variety of circumstances, go into a variety of instances (in between 1-100).
6. For Instance type, select your instance type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised.
Optionally, you can set up sophisticated security and facilities settings, including virtual private cloud (VPC) networking, service function consents, and encryption settings. For many use cases, the default settings will work well. However, for production deployments, you might desire to examine these settings to align with your company's security and compliance requirements.
7. Choose Deploy to begin utilizing the model.
When the release is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play area.
8. Choose Open in playground to access an interactive interface where you can try out different triggers and change model criteria like temperature and maximum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal outcomes. For instance, material for reasoning.
This is an outstanding method to check out the design's reasoning and text generation capabilities before incorporating it into your applications. The play ground supplies instant feedback, assisting you comprehend how the design reacts to various inputs and letting you tweak your prompts for optimal outcomes.
You can quickly test the design in the play area through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example demonstrates how to carry out reasoning utilizing a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually produced the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime customer, sets up inference criteria, and sends a request to produce text based on a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML options that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart provides 2 hassle-free techniques: utilizing the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both methods to help you choose the technique that finest suits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be prompted to develop a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The model browser displays available designs, with details like the provider name and model capabilities.
4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each model card reveals key details, including:
- Model name
Deleting the wiki page 'DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart' cannot be undone. Continue?